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Granular materials under vibration: Simulations of rotating spheres
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We present simulations of spheres with a rough surface in two-dimensional (2D) vibrating boxes.
We introduce a collision model based on recent experiments with colliding spheres. During the
collision of two rough particles energy is dissipated and, possibly, linear momentum is transferred to
rotational momentum. We examine the model system by varying the parameters, as for example the
coefficient of friction, x. Using an event driven algorithm, we focus on the fluidized regime, i.e., on
the case of rather small densities. We find that the behavior of the system depends on the frictional
properties of both particles and walls. Introducing particle-particle friction changes the behavior
quantitatively. Rough, dissipative walls lead to a qualitative change of the system’s behavior in the
case of low densities. We present an expression for the ratio of kinetic and rotational energy in terms
of the particles’ moment of inertia, of the coefficient of friction, and of the tangential restitution.
Furthermore, we compare our simulations with recent experiments on vibrated granular systems in
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2D.

PACS number(s): 46.10.4+z, 05.60.+w, 05.40.+j

I. INTRODUCTION

The behavior of dry granular materials is important
for various applications, such as transport, storage, or
mixing. In recent years a lot of effort has been invested
in the understanding of effects such as size segregation
[1-4], heap-formation [5,6], and convection [7-9]. Also
phenomena like surface waves [10,11], sound wave prop-
agation [12,13], and the so-called “decompaction” [14]
were recently examined. For a review see Ref. [15]. In
this study we focus on granular model media in 2D un-
der vertical vibrations in the gravitational field. Also this
system recently received a lot of interest [16-22].

Due to the complex dynamics and the dissipative na-
ture of granular systems, analytical approaches, i.e., ki-
netic theories [23-25], are quite difficult to handle and
can be solved only in small ranges of parameter space.
Mazighi et al. [20] solved the dissipative Boltzmann equa-
tion, for a one-dimensional (1D) system, in the limits of
weak and strong dissipation. Detailed experimental stud-
ies of granular systems are necessary in order to aid the
progress in theoretical research.

The experimental assessment of local quantities, such
as granular temperature or pressure, is extremely dif-
ficult. However, an experimental setup was developed
that uses digital high-speed photography to track the lin-
ear and angular motion of the particles [16,21,26] in 2D
systems.

In addition, numerical simulations are an adequate tool
to study the behavior of dissipative granulates and thus
complement experiments and theories. The majority of
granular media simulations are performed using molecu-
lar dynamics (MD) methods [8,9,27-30], but also event
driven (ED) algorithms [18-20,31-34] are used. For a
comparison of both methods see [19,28,31,35]. MD algo-
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rithms, in general, integrate Newton’s equations of mo-
tion at fixed intervals of time. ED algorithms, in con-
trast, evaluate the time of the next contact and compute
the particles’ velocities after this event. Both simulation
methods are based on assumptions about the interaction
of the particles. In MD simulations contact forces are
active as long as particles overlap, whereas in ED sim-
ulations the particles do not overlap and the contact is
assumed to be instantaneous.

Recently, vibrated granular media were examined nu-
merically and experimentally in 1D [17,18,20] and also
in 2D [19,36,37]. The transition from a fluidized to a
condensed regime was observed and scaling laws for the
different parameters were found. In the fluidized regime
the reduced height of the center of mass, H, scales with
the typical velocity of the vibrating container, V. The
behavior of H follows the law H « V¢ and both simula-
tions and experiments lead to § =2 in 1D, and § < 2 in
2D. The astonishing and theoretically unexpected find-
ing is that the power is smaller than 2 in 2D. Luding
et al. [19] observed a power § = 1.5, whereas Warr et
al. [16] found values between § = 1.3 and § = 1.4 [16].
In contrast, kinetic theory approaches [16,22] lead to the
power 6 = 2. Besides the V scaling, both experiment and
simulations predict that H decreases with an increasing
number of particles IV, i.e., H o« N~¥. Numerical simu-
lations show v = 1 [19], whereas experiments lead to the
power 0.3 < v < 1 [16]. Thus, the experimental results
show that the simplified numerical model without rota-
tion [19] overestimates the exponents § and v. Our aim is
now to allow rotation in the numerical model of Ref. [19]
and to examine the behavior of the system in this case.
Furthermore, we will compare the numerical results with
the experimental data of Ref. [16].

In Sec. IT we describe the collision model and intro-
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duce the new parameters necessary to handle rotating
particles. The numerical method and the boundary con-
ditions are presented in Sec. III. Section IV contains
several examples of binary collisions while in Sec. V the
simulational results are discussed. Finally, we summarize
and conclude in Sec. VI

II. THE COLLISION MODEL

Our description of the collisions of particles are based
on the ideas of Maw, Barber, and Fawcett [38] and there-
fore, we apply the simplified collision model introduced
by Walton et al. [29] and recently established experimen-
tally by Foerster et al. [26].

For given velocities before contact, we need three coef-
ficients to evaluate the velocities after the collision. The
first, the coefficient of normal restitution, €, defines the
incomplete restitution of the normal component of the
relative velocity. The second, the coefficient of friction,
1, relates the tangential force to the normal force, i.e.,
Coulomb’s law. The third, the coefficient of maximum
tangential restitution, By, limits the restitution of tangen-
tial velocity of the contact point, when contacts are bro-
ken. Note that this model implies that a contact either
follows Coulomb’s law or breaks [26,29]. In the following,
we apply the basic conservation laws and determine the
equations for the velocities after one collision.

Consider two particles with diameters d; and d» and
masses m; and my. The normal unit vector for their
contact is

T1— T2

= T= =
|71 — 72|

(1)
where 7; is the vector to the center of particle ¢ (i = 1,
2). The relative velocity of the contact point is

d ds .
1_;1: = 271 — 172 — (?144_)'1 -+ ?2(4)2) X n, (2)

where ¢; and &; are the linear and angular velocities be-
fore collision of particle i. We remark that v, = |U,]
increases when, for example, the particle velocities point
to opposite directions and the angular velocities point to

the same direction. ¥, has the normal component 17’.(:") =

(7. - i) and the tangential component 75 = 7, —

7).
The vector 7% defines the direction of the tangential
unit vector ¢ = ¥t / |U£"|. The impact angle, v, is de-
fined as the angle between 7 and ¥, and we always have
m/2 < v < m. For illustration, we give a schematic pic-
ture of two colliding particles, with w; = wy = 0, just
before a collision in Fig. 1(a).

The momentum conservation law leads to the change
of linear momentum of particle 1,

Aﬁ = ml(ﬁl - 171) = —mz(ﬁz - 172)7 (3)

with 4; designating the unknown velocity of particle 3
after the collision. The normal component, AP™) does
not affect the angular velocities, whereas the tangential

% (a) (b)

FIG. 1. Typical velocities of two particles just before (a)
and just after (b) collision.

component AP® leads to a change of angular momen-
tum. AP® s active at the contact point, perpendicu-
lar to the momentarm, —(d;/2)7. Therefore, the vector
product of the moment arm and AP leads to the change
of angular momentum

—ix AP = Z(&' - @). (4)

In Eq. (4) I is the moment of inertia about the center of
a particle and &' is the unknown angular velocity after
contact. Note that Eq. (4) leads to the same change
of angular momentum for both particles. We plot the
velocities after contact schematically in Fig. 1(b).

From AP we get the velocities after the collision from
Egs. (3) and (4):

1—):1 = 171 + Aﬁ/ml, (58.)
& =a — 4o AP (5b)
! (2I) ’
’L—I:Z = -’2 - Aﬁ/mg, (5C)
w d2 5
Dy = Dp — ﬁn x AP. (5d)

At first, we calculate the normal component of the mo-
mentum change, AP(™) using the definition of the coef-
ficient of normal restitution

i = _Eﬁén% (6)
that connects the normal velocity after contact, ﬁﬁ"),
with the normal velocity before contact, for 0 < € < 1.
Here, nothing is said about a possible velocity depen-
dence of € [28].

Inserting Eq. (6) into the normal component of the

sum AP/m; + AP/ma,, see Eq. (3), we get the normal
component of the momentum change

AP™ = —myy(1 + )7, (7)

with the reduced mass mi; = mymy/(my + m2).
Coulomb’s law relates the tangential and the normal
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components of AP, ie., ]Aﬁ(t)] = p|Aﬁ(")|, with the
coefficient of friction, 4 > 0. Since the contact is dissipa-
tive, the direction of AP® is opposite to 17'£t) and thus
given by —t. Therefore, the tangential component of the
change of momentum is

AP = pmay(1+ v cosy T, ®

with v{™ = wﬁ")] = —wv,cos~y, because cosy < 0 for
all possible v. Together with the definition of ¢ =
17£t)/(vc siny), the sum of Eqgs. (7) and (8) leads to the
change of momentum

AP = —myp(1 + €)™ + myau(l + €) coty 70, (9)

see also Eq. (7) in Ref. [26]. Note that coty — —oo for
v — m, where v = 7 is the limit of a central collision.
In this limit of small tangential velocities AP(*) may get
very large and thus |#()| may get greater than |7(*)| if
one simply inserts Eq. (9) in Egs. (5a) and (5c). This
would lead to an increase of energy and thus limits Eq.
(9) and thereby Coulomb’s law to rather small impact
angles, i.e., large tangential velocities. The case of large
AP® corresponds to a large force in the tangential direc-
tion, acting during contact. Such a large force eventually
breaks the contact and leads to a nonfrictional tangen-
tial motion of the two surfaces. In order to handle this
case, Walton et al. [29] and Foerster et al. [26] introduce
the coefficient of maximum tangential restitution 8o with
—1 < Bo < 1 [39], which limits the tangential restitution
in the case of broken contacts, i.e., large v or small tan-
gential velocities.

We rewrite Eq. (9) to get a form that contains the co-
efficient of normal restitution and the tangential restitu-
tion, (3, in a similar manner. The tangential restitution
is defined by the tangential equivalent to Eq. (6), i.e.,
ﬂ'g) = —,Bﬁgt), and, in general, depends on 5. Thus, the
momentum change is

AP = —myz(1 + €)7™ — 2myy(1 + B)7Y (10)

for solid spheres. The factor 2/7 stems from the fact
that a change of linear tangential velocity is always
connected to a change of angular momentum and de-
pends on the moment of inertia of the involved parti-
cles. In Eq. (10) we have 8 = min|[Bo,31]. For large
v and thus broken contacts, we use 8 = (3p. Inserting
B=p=-1-— %,u(l + €) coty in Eq. (10) leads to Eq.
(9) and corresponds to Coulomb-type contacts for small
7. For a detailed calculation of 3; see Appendix A.

We plot B as a function of v in Fig. 2(a). Nega-
tive 8 values lead to a decrease of vg) during contact,
whereas positive 3 values correspond to an inversion of
the direction of ¢;.. || < 1 means that the absolute
value of the relative velocity is smaller after the collision
than before. This somewhat simplified model allows only
Coulomb friction, for v < <y, or only broken contacts, for
Y 2 7o, whereas in nature both kinds of contact might
coexist [38]. The angle 7o follows from By = f4, i.e.,

—tanyo = (7/2)u(1 + €)/(1 + Bo).

S. LUDING 52

(b)

k2

tany,
0 !

—aasen Bk

FIG. 2. (a) Schematic plot of the tangential restitution 8
as a function of the impact angle v. (b) Schematic picture of
Uy = uﬁt)/'vgn) as a function of ¥, = 'uﬁt)/vgn).

In order to classify quantitatively the collisions, Fo-
erster et al. [26] use the ratios of tangential and nor-

mal velocities. We define ¥; = vy)/vﬁn) = —tanvy and
¥, = uﬁt)/v,(;") = etan+y’, where 7' is the angle between
%, and 7i. This leads to

Uy =0 — (1 +€)p (11)

for Coulomb contacts and to
\D2 = _ﬂO‘Ill (12)

for broken contacts. Coulomb-type contacts occur for
large ¥4, i.e., v < 70, and broken contacts for small ¥,
i.e., v > 40. We plot a schematic picture of ¥, as a
function of ¥y in Fig. 2(b). The dotted line shows the
case of . = 0, i.e., no friction, and the solid line follows
Egs. (11) and (12) in their ranges of validity. For a given
set of parameters, €, u, and By, each possible collision will
correspond to one point on the solid line in Fig. 2(b).

From Eq. (10) we calculate the ratio of tangential and
normal momentum change as a function of v in Appendix
B. This ratio is connected to the ratio of the integrals over
tangential and normal forces and is one possible presen-
tation of Coulomb’s law.
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III. THE SIMULATION METHOD

Granular materials consist of mesoscopic particles,
whose surface is rough at least on a microscopic scale.
Usually, one models granulates by spheres, with either a
perfectly smooth or a rough surface. Recent publications
[30], using nonspherical particles, also take into account
the asymmetric nature of, e.g., real sand. However, the
consequence of a rough surface is solid friction: If two
particles touch each other, a finite force F; is needed
to trigger tangential motion and if two particles move
against each other, a finite force Fy is needed to maintain
the motion. Solid friction leads to a change of linear and
angular momentum as well. Therefore, a rough surface
implies both rotation and energy loss. Thus, it is impor-
tant to allow rotation as soon as particles are assumed
to have a rough surface. In simulations, we describe the
roughness of surfaces and the connected energy dissipa-
tion, using the parameters p and (o, as introduced in
Sec. II.

Further mechanisms of energy loss are, for example,
the permanent deformation of a particle during contact,
or the transfer of kinetic energy to thermal energy, i.e.
vibrational energy. We account for those effects, using
the coefficient of normal restitution, e.

A. Event driven simulations

Our model system is a rectangular container of width
L, open at the top. The vertical position of the bottom
of the box at time ¢ is

zo(t) = Ao sin(2w ft), (13)

where f is the frequency and A is the amplitude. The
typical velocity of the motion is V = Agw, with w = 27 f.
The container is filled with N spherical particles with
diameter d; (¢ = 1, ..., N). If not explicitly mentioned,
we have d; uniformly distributed in the range dy — wo <
d; < do + wo, where dg = 1 mm and wo = 0.1 mm.
Since we are interested in the behavior of granular par-
ticles in the fluidized regime, where the density is rather
small, we use an event driven (ED) method. In our sim-
ulations, the particles follow an undisturbed Newtonian
motion, under the influence of gravity, until an event oc-
curs. An event is either the collision of two particles
or the collision of one particle with a wall. Using the
velocities just before contact we compute the particles’
velocities after the contact following Egs. (5). Note that
in the ED method the time for which two particles are
in contact is implicitly zero. The consequence is that
exclusively two particle contacts occur. The assumption
of pairwise contacts is reasonable for our system, since
the time between contacts is, on average, much larger
than the duration of a contact. The contact time of two
steel spheres of diameter d = 1 mm is ¢, ~ 3 x 107¢ s
(28], whereas the time between events is of the order of
tev = 1073 5, assuming an average separation of 0.1 mm
and an average velocity of 0.1 m/s. In a recent publi-
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cation it was proven that the results of ED simulations,
with zero contact time, and of MD simulations, with a
contact time greater than zero, agree well in the fluidized
regime [19]. We remark that ED algorithms run into
problems when ., gets to be small. In dense systems
with strong dissipation t., may vanish and clusters will
occur. A cluster is an array of particles in contact with
zero relative energy. This problem, called inelastic col-
lapse [20,33], may be handled, at least in 1D, using the
largest relative velocity (LRV) procedure [18].

In recent papers a simple ED algorithm was used to
simulate the behavior of 1D systems [17,18,20,28,33,35].
Such simple ED algorithms update the whole system af-
ter each event, a method which is straightforward, but in-
efficient for large numbers of particles. In Ref. [32] an ED
algorithm was introduced which updates only those par-
ticles which were involved in the previous collision. For
this a double buffering data structure is implemented,
which contains the “old” status and the “new” status,
each consisting of time of event, position, velocities, and
partner. The “old” status of particle ¢ has to be kept in
memory, in order to calculate the time of the next con-
tact, t;;, of particle ¢ with any other object 7. An object
j is either a particle (j =1, ..., 4—1,74+1, ..., N) or a
wall (j = N+1, N+ 2, N +3). The minimum of all ¢;;
is stored in the “new” status of particle ¢, together with
the corresponding partner j, but the velocities after the
collision are not yet calculated. This would be a waste
of computer time, since before the time ¢;; the predicted
partners 7 and j might be involved into several collisions
with other particles. The minimum times of event, i.e.,
the times which indicate the next event for a certain par-
ticle, are stored in an ordered heap tree, such that the
next event is found at the top of the heap. For a detailed
description of the algorithm see Ref. [32].

As in Ref. [19,35] we implement the algorithm of Ref.
[32] with some changes and further extensions. First,
we introduce the gravitational force and the sinusoidally
moving bottom. Despite the gravitational acceleration,
all contact times of particles with each other or with
the lateral walls can be calculated analytically. Unfortu-
nately, the time of contact of any particle with the bot-
tom of the box has to be computed numerically [18,19,35].
Second, we introduce dissipation, i.e., the normal ve-
locity after contact is determined by the coefficient of
normal restitution, e. As an extension of the algorithm
used in Ref. [19] we allow the particles to rotate and
take care of solid friction by introducing the coefficient
of friction, u, and the coefficient of maximum tangential
restitution, By. If, for example, the coeflicient of normal
restitution depends on the partner of the colliding parti-
cle, we use ¢, €, and € for particle-particle, particle-wall,
and particle-bottom collisions, respectively. The collision
model is described in detail in Sec. II.

B. Boundary conditions

We are interested in the steady-state situation, where
the average quantities of the system, like the height of the
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center of mass, the kinetic energy, or the rotational en-
ergy, are constant. Using different initial conditions, we
found no dependence of the steady state on the choice
of either, different initial separation or different initial
velocities. For each simulation run we trace the aver-
age quantities of the system at phase zero, i.e., the bot-
tom moves upwards. We check that the steady state
is reached, and perform the averages over a time larger
than the time scale of typical fluctuations. We assume
that the steady state is reached when the average quan-
tities do not depend on the time intervals used for the
averages. If the time of average is too small, the natural
fluctuations of the averaged quantities get visible.

‘We use two configurations of the box. First, we fix the
side walls and move only the bottom plate, and second,
we move the whole container. If not explicitly mentioned
the first configuration is used. As expected, we observe
no differences between these configurations in the case of
smooth sidewalls. The simulations were carried out on

HP Apollo and IBM RS6000 Workstations.

IV. SOME EXAMPLES OF SIMPLE COLLISIONS

In order to get a qualitative idea concerning the impor-
tance of the parameters of tangential friction, i.e., 4 and
Bo, we first present some simulations of particle-wall and
of particle-particle collisions. Therefore, we subsequently
vary the initial tangential velocities u, €, and Gp, and we
plot some snapshots at different times before and after
collision.

A. Particle-wall collisions

To examine the influence of the coefficient of friction,
W, on collisions of particles with the walls, we perform
several simulations, where we vary the tangential veloc-

ity, v((,t) , and the coefficient of friction, t,,, while the nor-

mal velocity, v((,"), and the coefficient of restitution, e,
stay constant. Qur choice of the tangential velocities cor-
responds to certain values of ¥,, and thus, the value of
W, is also defined for each collision, see Sec. II. It is
obvious that the tangential relative momentum is also
partly transferred into rotational momentum. Only for
pw = 0, ie., a perfectly smooth surface, no change of
angular velocity will occur.

Snapshots from three simulations of eight pairs of par-
ticles colliding with the sidewalls are plotted in Fig. 3.
We display four pictures of each simulation and the time
between two pictures is 6 ms. The initial normal velocity
is 'U(()") = 0.5 m/s, relative to the sidewall, and the ini-

tial tangential velocities are from bottom to top v((,t) =
0.0, 0.25,..., 1.75 m/s, indicated by the lines. Our choice
of the tangential velocity corresponds to the ¥, values
¥, = 0, 0.5,..., and 3.5. The angular velocity initially
equals zero and is indicated by the greyscale of the quar-
ter circles, i.e., black corresponds to w’ = 0 and white
corresponds to w’ > 720 rad/s. The actual angle of each
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particle is indicated by the position of the quarter circles.
The coeflicient of friction is set to p = 0.2 (a)—(d), pw =
0.5 (e)—(h), and p,, = 10* (i)—(1), i.e., a completely rough
surface. The coefficient of normal restitution is €,, = 0.9
and the coefficient of maximum tangential restitution is
Bow = 0.5.

In general, large tangential velocity, v(()t), will lead
to large angular velocity, w’, of the particle after the
collision. However, the magnitude of w’ is limited by
Coulomb’s law and thus by p,,. If the normal momen-
tum change is rather small, the momentum transferred
from linear to angular direction is small as well. With
increasing tangential velocity the particles reach a max-
imum angular velocity, the value of which increases with
increasing p,, [compare Fig. 3(d) where p,, = 0.2 and
Fig. 3(h) where p,, = 0.5]. For very large fi,, i.e., a com-
pletely rough surface [Fig. 3(1)], the maximum angular
velocity is not limited by the change of normal momen-
tum.

To understand the influence of By, on the collisions of
particles with walls, we perform further simulations with
the same initial conditions as before for Fig. 3. We fix
ey = 0.5 and vary the coeflicient of tangential restitu-
tion Boy, = —0.5, 0.0, and 0.5 for Figs. 4(a)-4(d), 4(e)-
4(h), and 4(i)-4(l), respectively. These B, values cor-
respond to —tanvy, = 6.65, 3.33, and 2.22, such that
¥, < — tan~yp, i.e., we have broken contacts, for all colli-
sions, except the three uppermost in Figs. 4(i)—4(l). Neg-
ative (Bg,, values simply lead to a decrease of the velocity
of the contact point. Positive By, values lead to an inver-
sion of the velocity. Thus we find an increasing angular
velocity with increasing Boq, -

B. Particle-particle collisions

The collisions of particles with each other are differ-
ent from collisions with a fixed boundary. In Fig. 5 we
plot snapshots from three simulations of ten pairs of col-
liding particles, four pictures of each simulation, and a
time of 4 ms between two pictures. The initial veloci-
ties are v, = +0.5 m/s, vy, = 0 m/s, and w = 0. We
vary the ratio of tangential and normal velocity by mov-
ing the right particle of each pair a distance by upwards.
From bottom to top by = 0,0.1d,..., and 0.9d. We use
the coeflicient of normal restitution € = 0.9 and the co-
efficient of maximum tangential restitution By = 0.5 and
vary the coefficient of friction p = 0.0 [5(a)-5(d)], p =
0.2 [5(e)-5(h)], and p = 0.5 [5(i)-5(1)]. These values of
p lead to —tanvye = 0, 0.89, and 1.33. The total linear
momentum is conserved for each collision, but the rel-
ative momentum may be transferred from one direction
to a perpendicular one, if the collision parameter, bg, in-
creases [for example, compare Figs. 5(b) and 5(c), the
third pair from the top]. In these simulations, the val-
ues by = 0, 0.1d,..., 0.9d, correspond to ¥; = 0, 0.1005,
0.204, 0.314,..., 1.333, and 2.065, respectively. If p is
larger than zero, a transfer of linear to angular momen-
tum takes place, see Figs. 5(e)-5(1). For small ¥, values,
i.e., small by values, the tangential velocities are small



and therefore, the angular momentum after the collision
is small too. With increasing ¥; the angular momentum
after collision increases, until it is limited by Coulomb’s
law in the range of ¥; > —tan~p.

The coefficient of normal restitution is material and,
possibly, velocity dependent. For the sake of simplicity
we do not introduce any velocity dependence of € here.
In order to get an idea of the consequences of different €
values for particle-particle collisions we plot several sim-
ulations with varying € in Fig. 6. We use the same initial
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conditions, as for Fig. 5, with 4 = 0.2 and Gy = 0.5. We
compare rather inelastic collisions, ¢ = 0.2 [6(a)-6(d)],
with collisions of particles made of aluminum, ¢ = 0.6
[6(e)-6(h)], and with almost elastic contacts, ¢ = 0.99
[6(1)-6(1)]. For small by, we find a strong dependence of
the normal velocity after contact on the value of ¢, i.e., a
lot of relative momentum is lost for small e. For large by,
the results depend much less on €. In the intermediate
bo regime, larger rotational velocities occur for larger €
values.
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CECICECECICICACE
CECECECECRCRCRC!
CECRCRCRRSESE%)
CRCEONCRUVEVEVEG
CRCEAR R SN SNCN S,

~
o
~

) (h)

CHCECRCRVEVESNS
CROCRANYNGRIEGE)

~
it

1)

[
~—

k) @

FIG. 3. Snapshots of particle wall collisions with v(()") = 0.5 m/s, and vgt) = 0.0, 0.25,..., 1.75 m/s from bottom to top.
The velocities are indicated by the lines. The angular velocity, w, initially equals zero and is indicated by the greyscale of the
quarter circles. The parameters are €,, = 0.9, Bo.,, = 0.5, and g, = 0.2 (a)—(d), 0.5 (e)—(h), 10* (i)-(1).



C. Consequences

In this section we present some examples of particle-
wall and particle-particle collisions with different coeffi-
cients of restitution and friction. We observe an interest-
ing behavior when varying either the ratio of tangential
and normal velocity, ¥;, or the parameters €, u, and
Bo. With the model we use, it is possible to classify
pair collisions, i.e., particle-particle or particle-wall col-
lisions in terms of ¥; and ¥,. However, the behavior
of a system of many particles in a vibrating box is still
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to be examined. For many particle systems, the ratio of
tangential and normal velocity, ¥, is different for each
collision. Therefore, we will perform several simulations
of vibrated granular media in 2D, in order to understand
the more complex, many particle systems.

V. RESULTS AND DISCUSSION

We study the behavior of N particles of diameter d; (¢
=1, ..., N), randomly chosen from the interval [dy — wo,
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FIG. 4. Snapshots of simulations, with the same initial conditions as in Fig. 3. Here Bo. = —0.5 (a)—(d), Bow = 0.0 (e)—(h),

and Bow = 0.5 (i)—(1), €w = 0.9, and p., = 0.5.
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do + wo]. If not mentioned explicitly, dg = 1 mm and
wo = 0.1 mm. The properties of these particles are de-
fined through the coefficient of normal restitution ¢, the
coefficient of friction p, and the coefficient of maximum
tangential restitution B5. We put the particles into a con-
tainer of width L and infinite height. As a simplification,
we assume for most of our simulations that the bottom
of the container is elastic and perfectly smooth, i.e., €5 =
1 and pp = 0. At first, we concentrate on particles with
a rough surface and neglect friction with the side-walls
of the container, i.e., €, = 1 and pu,, = 0. Later, we will
also examine the effect of rough walls.

In the following, we calculate three different average
quantities of the system: the reduced height of the cen-
ter of mass H, the kinetic energy K, and the rotational
energy R. We perform the averages at phase zero, i.e.,
when the bottom moves upwards with velocity V = Agw.

We calculate the reduced height of the center of mass,
H = h¢m. — he.m.o, with the height of the center of mass,
hem. = (1/M) vazl m;z;. M is the total mass of the
particles, M = Zf‘;l m;, with the mass m; and the ver-
tical coordinate z; of particle . The average mass of one
particle is m = M/N, and the height of the center of
mass at rest is

npdo

b [(1 —V/3/2)np + \/E/zn,i]

o vin].

hemo =

(14)

Here np is the average number of beads per layer in the
presence of walls, np, = int[N/np] is the number of full
layers, and n, = N — npnp is the number of beads in
the uppermost layer. Note that Eq. (14) is exact in the
case of monodisperse particles only. As an example, for
N =50 and L = 10dy we approximate n; ~ 9, since due
to the size fluctuations of the particles, we almost always
find nine particles per layer, but not ten, as would ideally
fit into the box. Thus we use for N = 50 and L/dy =
10 the values np = 9, np = 5, and n, = 5, which leads
t0 he.m.o = 2.492 x 1073 m. Varying np by 1 we tested
that H does not depend on the specific value of n; for
velocities V' > 0.1 m/s. For larger amplitudes, i.e., lower
frequencies as used in this study additional tests have to
be performed, in order to verify Eq. (14) for particles of
different size.

The average potential energy per particle is mgH, with
g = 9.81 m/s? being the gravitational acceleration. Apart
from the constant prefactor m/2, the average kinetic en-
ergy per particle is K = (1/M) Zf\;l m;v?, with v; being
the velocity of particle . In analogy, we define the ro-
tational energy as R = (¢/M) Y[, mi(%w;)?, with w;
being the angular velocity of particle z. For more details
on g, the factor describing the structure of the particles,
see Appendix A.

A. Simulations with elastic walls

At first, we examine the behavior of the system when
the coefficient of friction changes. Using N = 50, ¢ = 0.9,
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Bo = 0.5, and elastic, smooth walls, we vary the coeffi-
cient of friction u from 0 to 20. The two limits correspond
to no friction and to an almost perfectly rough surface
respectively. In Fig. 7(a) we plot the reduced height of
the center of mass H versus u for two values of V, i.e., V
= 1.57m/s and V = 0.314 m/s. For V = 0.314 m/s we
vary the frequency f, such that f = 40, 100, and 500 Hz,
and for V = 1.57 m/s we use f = 100 Hz. The standard
deviation of the H values lies between 10% and 15% of
the absolute value of H. We find that H depends slightly
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FIG. 7. (a) The reduced height of the center of mass, H,
is plotted vs g in log-log scale. The parameters are N = 50,
ny = 10, € = 0.9, and Bo = 0.5. The values of the typical
velocity, V', and of the frequency, f, can be extracted from
the insert. (b) The ratio of kinetic and rotational energy,
K/R, is plotted vs p in log-log scale. The simulations are the
same as in (a) and the line represents Eq. (15). (c) The ratio
of kinetic energy and reduced height, K/H, is plotted vs p in
lin-log scale. The simulations are the same as in (a).
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on u, i.e., for increasing p the potential energy decreases.
Note that the value of H does not change, as long as V'
stays constant. This fact is consistent with the scaling
laws found in Refs. [16,19]. Furthermore, H saturates in
both limits u < 1 and p > 1. H for a perfectly smooth
surface is approximately two times larger than H for a
completely rough surface. In Fig. 7(b) we plot the ra-
tio of kinetic energy and rotational energy for the same
simulations, as presented in Fig. 7(a). We observe that
the data coincide even for different V' values. The ratio
K /R seems to be rather independent of the external pa-
rameters Ag and w. However, there exists a dependence
of K/R on the coefficient of friction . The line in Fig.
7(b) is the function

po 2/9+1/p)
(1+Bo)

with ¢ = 2/5 and By = 0.5. ¢ determines the moment
of inertia of the particles and is discussed in Appendix
A. We get r, the effective coupling between kinetic and
rotational energy, from the following assumptions for
the limiting regimes. For weak coupling, i.e., small pu,
the rotational degree of freedom is weakly excited and
we expect 7 o« 1/u. For strong coupling r should not
depend on g. In this regime, the kinetic and angu-
lar velocities are of the same order of magnitude, i.e.,
v2y = v2y & (dwyo/2)? =~ vZ. Here the indices z, 2, and y
correspond to the directions horizontal, vertical, and per-
pendicular to the plane of motion, respectively. We have
two linear and one rotational degrees of freedom, and
with K ~ vZ) +v2) and R =~ q(wyod/2)?%, we get 7 o 2/q.
We find that r diverges, for vanishing p or ¢q. For van-
ishing (1 + Bo) we expect r o< (1 + Bo) 1, since Bp = —1
corresponds to a smooth surface. For small (1 + §) we
find almost all collisions in the regime of broken contacts,
such that Eq. (12) determines the velocity after contact.
For large values of (14 35) only a certain partition of the
collisions is governed by Eq. (12), the rest follows Eq.
(11), independently of By. Thus, if (1 + Bo) is small, it
affects the rotational velocities after contact strongly. If
(1 + Bo) is large, the effect is rather weak. Therefore, we
assume the multiplicative factor (1 + Bo)~! in Eq. (15).
In Fig. 7(c) we plot the ratio of K and H, ie., K/H
versus p for the same simulations, as presented in Fig.
7(a). Equipartition of potential and kinetic energy, i.e.,
mgH = (m/2)K, here corresponds to a ratio K/H = 2g.
We find that the ratio of kinetic and potential energy is
smaller than expected, except for the low frequency data
(crosses). Also, except for low frequencies, the ratio K /H
decreases slightly with increasing u.

Now we are interested in how far (o affects the behav-
ior of the vibrated system. Therefore we use the same
parameters as for Fig. 7, i.e., N = 50, ¢ = 0.9, and two
different values for the velocity: V = 1.57 m/s and V =
0.314 m/s with f = 100 Hz. Here, we fix o = 0.2 and
vary (3o from —1 to 1. By = —1 corresponds to no friction,
whereas By = 1 corresponds to a complete inversion of
the tangential velocity for small values of ¥;. For small
¥,, the tangential velocity before contact is small com-
pared to the normal velocity. In Fig. 8(a) we plot the
reduced height of the center of mass H versus Bo. We

(15)
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find that H is almost constant for 8y > —0.5; for smaller
Bo, H increases, since rotation of particles becomes less
and less important. In order to display the strength of
rotation, we plot in Fig. 8(b) the ratio K/R as a function
of By. We find that the ratio K /R diverges for decreasing
Bo- The line in Fig. 8(b) represents Eq. (15) with ¢ = 2/5
and g = 0.2. The ratio K/H is, besides a slight decrease
with increasing [y, almost independent of 3y, as can be
seen from Fig. 8(c).

The third parameter that influences the rotational en-
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FIG. 8. (a) The reduced height of the center of mass, H,
is plotted vs Bo in log-lin scale. The parameters are N = 50,
ny = 10, € = 0.9, p = 0.2. f = 100 Hz and the values of
the typical velocity, V, can be extracted from the insert. (b)
The ratio of kinetic and rotational energy, K/R, is plotted
vs (o for the same simulations as in (a). The line represents
Eq. (15). (c) The ratio of kinetic energy and reduced height,
K/H, is plotted vs Bp. The simulations are the same as in

(a)-
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ergy R of the system is the moment of inertia I =
gm(d/2)? of the particles used. To demonstrate the im-
portance of this quantity, we use the same parameters
as before in Fig. 8, i.e., N = 50, ¢ = 0.9, and two dif-
ferent values for the velocity: V = 1.57 m/s and V =
0.314 m/s, with f = 100 Hz. We use different p values,
Bo = 0, and vary ¢q from 0 to 1. The lower and upper
limits correspond to particles with all their mass at the
center or to rings, i.e., 2D particles with all their mass,
a distance d/2 away from the center. The dependence of
H on q is plotted in Fig. 9(a). The qualitative behav-
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FIG. 9. (a) The reduced height of the center of mass, H,
is plotted vs g in log-lin scale. The parameters are N = 50,
ny = 10, € = 0.9, and Bo = 0. f = 100 Hz and the values
of the typical velocity, V', and of the coefficient of friction,
p, can be extracted from the insert. (b) The ratio of kinetic
and rotational energy, K/R, is plotted vs ¢ in log-log scale.
The simulations are the same as in (a). The line represents
Eq. (15) with g = 0.25. (c) The ratio of kinetic energy and
reduced height, K/H, is plotted vs g for the same simulations
as in (a).
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ior of the center of mass is the same as in Figs. 7 and
8. H decreases with increasing g, i.e., with rotational
energy getting larger and larger. However, we find no
dependence of H on q for experimentally relevant situa-
tions with either spheres, i.e., ¢ = 2/5, or disks, i.e., ¢ =
1/2. From Fig. 9(b), where K/R is plotted versus g, we
infer that q is a parameter like p or (o, i.e., a measure
for the ratio K/R. The line in Fig. 9(b) gives Eq. (15)
with ¢ = 0.25 and By = 0. In Fig. 9(c) we plot K/H
versus q and find this ratio only slightly decreasing with
increasing q.

We remark that the limits of p = 0, Bp = —1, and
g = 0 in Figs. 7(a), 8(a), and 9(a) coincide because all
these limits correspond to the case of no rotation. For the
same reason, the ratio K/R diverges in Figs. 7(b), 8(b),
and 9(b) on the left-hand sides of the plots, when the
variables approach the above limits. Note that the phe-
nomenological function r, see Eq. (15), is systematically
too small to fit K/R in Figs. 7(b) and 8(b). A factor of
1.3+£0.2 in Eq. (15) leads to a better agreement between
numerical simulations and phenomenological function r.
The above simulations show that kinetic and potential
energy are of the same order of magnitude, i.e., the ratio
K/H depends only slightly on the frictional parameters.
In contrast, the rotational energy is coupled with the ki-
netic energy via R o< K/r, with r being a function of the
parameters u, Bo, and q.

B. Simulations with rough, dissipative walls

In Ref. [19] an interesting behavior of the reduced
height of the center of mass H on the typical velocity V'
was observed in computer simulations. It is documented
that

H o« V3, (16)
with § = 1.5 in 2D. The simulations were performed for
smooth particles, i.e., neglecting rotation and preferen-
tially use a box with smooth but dissipative walls, i.e.,
€ < 1.

Experiments were performed with the same model sys-
tem, but with rough particles [16,21]. The experiments
confirm the scaling law H « V¢, with a somewhat smaller
6 between § = 1.3 and 6 = 1.4. However, taking into ac-
count the fluctuations of the quantity H and the different
boundary conditions, this agreement is still satisfactory.
Also the experiments were performed in the small veloc-
ity range 0.1 m/s < V < 1 m/s, whereas the simulations
explore the range 0.1 m/s < V < 10 m/s.

At first we test which influence the rotation of particles
has on H when we vary V. Therefore, we simulate N =
50 particles in a box of width L/dy = 10 with elastic, €,
= 1, and smooth, u,, = 0, walls. In Fig. 10, we plot H
as a function of V for either smooth, 4 = 0, label (1), or
rough, 4 = 0.2 and By = 0.5, label (2), particle surface.
In order to check if the results are affected by the size of
the container, we perform additional simulations with p
= 0.2, and By = 0.5, using N = 150, L/do = 30, label
(8), and N = 250, L/do = 50, label (4). From Fig. 10 we
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find that friction between particles leads to a systematic
reduction of H for given V, compare Fig. 7(a). Fur-
thermore, we observe no dependence of H on the system
size, as long as the ratio N/L is constant. Different from
the scaling laws predicted by simulations [19] and experi-
ments [16], we observe in the case of elastic, smooth walls
a large value of § = 2 for V' > 1 m/s. Note that for such
large values of V, the system is dilute. The experiments
were carried out in the range V' < 1 m/s and therefore
could not observe this behavior. The simulations used
smooth, but dissipative walls in the range V' > 1 m/s,
where § ~ 3/2 was observed. Thus the properties of the
walls affect § in the dilute case.

Now, we compare systems with different walls, either
smooth and elastic, smooth and dissipative, or rough and
dissipative. In Fig. 11 we plot H as a function of V for
N =50, e=09, pu=0.2 B = 0.5, and L/do = 10.
We compare simulations with elastic, €, = 1, and per-
fectly smooth, p,, = 0, walls, see label (1), with simula-
tions, using dissipative walls, €, = 0.9, see labels (2) and
(3). We have either smooth, p,, = 0, label (2), or rough
walls, p,, = 0.2, Bo, = 0.5, label (3). Note that dis-
tinct from Ref. [19], rotation of the particles is allowed,
and particle-particle contacts include friction. We ob-
serve in the case of dissipative, smooth walls, i.e., label
(2), that the height H behaves as predicted by Luding
et al. [19]. The power § = 3/2 is indicated by the dot-
ted line, label (4). For elastic, smooth walls, label (1),
the power § changes from 6 = 3/2, for V < 1 m/s, to
= 2 for V > 1 m/s. The crossover is marked with the
arrow and the dash-dotted line, label (5), indicates the
slope 2. Note that the crossover occurs not necessarily
for V.= 1 m/s; only for the simulations presented here,
we find § = 2 for V' > 1 m/s. In the dilute regime, colli-
sions between particles and the walls occur more frequent
and thus the walls’ properties become more important.
Dissipative walls, i.e., the value of ¢,,, does not change
the behavior of H, as long as particle-wall collisions are
rare, i.e., V < 1 m/s. In contrast, the power § depends
on €, in the dilute regime, where particles preferentially
collide with the walls. This behavior is connected to the
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FIG. 10. Reduced height, H, vs typical velocity, V, in
log-log scale. The parameters used are ¢ = 0.9, 3o = 0.5,
and g = 0 for (1), or p = 0.2 for (2)—(4). Furthermore, N =
50 for (1), (2), N = 150 for (3), N = 250 for (4), and L/d,
= 10, 30, and 50.
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FIG. 11. H vs V in log-log scale. The parameters used are
€ =109, p =02 Bo =05 N =50, and L/do = 10. The
properties of the walls are (3o, = 0.5 and different €,, and g,
ie., €y =1, po = 0 for (1), €w = 0.9, o, = 0 for (2), and €, =
0.9, pw = 0.2 for (3). The lines (4) and (5) indicate the slopes
3/2, and 2, respectively. The arrow marks the transition from
power 3/2 to power 2 for the data (1). Here, the walls are
fixed and only the bottom moves.

mean free path [ of one particle. If | <« L, the system
is dense and we find § = 3/2, independent of €,. For
1> L we find § = 3/2 for dissipative walls, and § =~ 2
for elastic walls [35]. Rough walls, label (3), make the
behavior even more difficult. Compared to the data for
smooth walls, label (2), the height H is more and more
reduced with increasing V. For large V', the value of ¢ is
not longer constant, and also depends on u.

One reason for this strange behavior, for rough walls,
may be the boundary condition of our system. For the
simulations presented in Fig. 11, we used fixed walls
where only the bottom was moving. In order to check
the effect of vertically moving walls we plot in Fig. 12
the results of simulations, performed using rough, but
moving walls, i.e., ., = 0.2, see label (1), and pu,, = 0.5,
see label (2). The vertical motion of the walls follows Eq.
(13). The data labeled (3) are the same as in Fig. 11, and
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FIG. 12. H vs V in log-log scale. The parameters used are
€ =09, pu =02 Bo =05 N =50, and L/do = 10. The
properties of the walls are B¢, = 0.5, €, = 0.9, and different
Hw, i€, py = 0.2 for (1,3), and pw = 0.5 for (2). For the
simulations (1,2) the walls move according to Eq. (13), and
the data (3) correspond to data (3) of Fig. 11, i.e., fixed walls.
The line (4) indicates the best fit to the data (1) and (2) for
V > 0.1 with the slope 1.33.
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the other parameters are € = 0.9, u = 0.2, By = Bow =
0.5, N = 50, and L/dy = 10, as before. A best fit of
the data (1) and (2) leads to the line (4), with a slope
6 =~ 1.33. Thus, it is important to take care of the mo-
tion of the walls in the case of rough walls. Furthermore,
6 = 1.33 is in agreement with the experimental results
[18].

C. Comparison with experiments

We now perform a direct comparison of our simulations
with recent experiments [16]. Therefore, we duplicate the
experimental setup, i.e., we use L = 165 mm. We set
the vibration frequency to f = 50 Hz and use different
amplitudes, Ag = 0.5, 1.12, 1.84, and 2.12 mm. For each
amplitude we perform simulations with different particle
numbers, N = 27, 40, 60, and 90. We use particles of
the same diameter, i.e., dp = 5 mm and we = 0, with
the coefficients of normal restitution, € = €, = €, = 0.92.
The coeflicients of friction are pu = p, = pp = 0.22,
and the coefficients of maximum tangential restitution
are here By = Bow = Bo» = 0.

Paralleling Figs. 15 and 16 of Ref. [16], we plot H =
he.m. — he.m.o @s a function of V = Agw in Fig. 13(a) and
as a function of the inverse number of layers, h = n/N in
Fig. 13(b). The simulations are not in perfect agreement
with the experimental data. To compare the simulations
with the experiments, we perform power law fits of the
form H « V?. The experiments lead to § = 1.239, 1.310,
1.326, and 1.022 for N = 27, 40, 60, and 90, respec-
tively, whereas best fits to our data result in § = 1.72,
1.66, 1.57, and 1.45. From these § values we calculate
§ = 1.60 £ 0.10. Figure 13(b) shows that also the depen-
dence of H on the number of particles N is different in
simulations and experiments. Power law fits of the form
H o (np/N)” to the experimental data lead to v = 0.140,
0.172, 0.396, and 0.350 for f = 50 Hz and amplitudes Ag
= 0.5, 1.12, 1.84, and 2.12 mm, respectively. Fits to
the simulations lead to » = 0.60, 0.71, 0.81, and 0.91
such that 7 = 0.76 £ 0.11. These simulations were per-
formed with a container of infinite height. Simulations
in a container with height 285 mm lead to the averaged
powers 8 = 1.52 + 0.06 and T = 0.70 + 0.08. These pow-
ers are still systematically larger than the experimentally
observed ones. The reduced slopes come from the simula-
tions with large amplitude and small numbers of particles
in which sometimes a particle hits the top.

One reason for such large exponents of § and v is pos-
sibly the value of €¢,. Therefore, we perform the same
simulations as for Fig. 13, only using different values for
the restitution with the bottom, i.e., ¢, = 0.84 and 0.96.
For decreasing €, we observe a decreasing H, but we do
not observe a significant dependence of § on €. Also v
decreases only slightly with decreasing ep.

Another possible reason for the discrepancy between
experiment and simulation is the experimental setup
which is not really two-dimensional, i.e., particles may
collide with front and back walls. The simulations of the
preceding subsection have shown that dissipative, rough
sidewalls in a 2D setup possibly change the exponent §.
Thus, we expect that front and rear walls in the third
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dimension also will affect the behavior of the system. In
Ref. [16] an estimation of the energy loss at front and
rear is presented. The estimated frictional energy loss,
due to wall friction between two particle-particle con-
tacts, was of the order of a few percent of the energy
lost per particle-particle collision. Thus, further, more
detailed comparisons of experiment and simulations are
necessary to understand the effects which cause the dif-
ferences.

VI. SUMMARY AND CONCLUSION

Following recent publications, we modeled two-
dimensional systems of spheres, situated in a vibrating
box. We used a collision model with experimental back-
ground and extended the model to be able to handle
particles of different structure. To clarify the elemen-
tary processes, i.e., particle-wall or particle-particle col-
lision, we presented several examples with different ini-
tial conditions and particles’ properties. We checked in
how far friction or particle structure changes the typi-
cal quantities of the system. Furthermore, we tested the
importance of the walls for the systems’ properties and
compared our simulations with recent experiments.

Introducing friction between particles leads to rota-
tional motion of the particles. Comparing the potential,
the kinetic, and the rotational energies we find that po-
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: . e N=40 »
a0 N=60 o
. ° N=90 o
a <
£ 5
T 001 | + 4
a
<
0.001 1
0.1 1
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01 ®) o V=0666m/s © |
3 ° o V=0.578m/s ©
g ° V=0352m/s >
o N V=0.157m/s + ]
E .t
T 001 F + 4
+ ]
. +
0.001 :

h

FIG. 13. (a) H vs V in log-log scale. The parameters of
dissipation are € = €, = € = 0.92, p = po = pup = 0.22,
and Bo = Bow = Bo» = 0.0. Crosses, triangles, squares, and
diamonds correspond to N = 27, 40, 60, and 90, respectively.
(b) H vs h = np/N in log-log scale for the same simulations as
in (a). Crosses, triangles, squares, and diamonds correspond
to Ag = 0.5, 1.12, 1.84, and 2.12 mm, respectively.
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tential and kinetic energy are of the same order of mag-
nitude, almost independent of the frictional properties of
the particles. Kinetic and rotational energy are coupled
via the relative velocity of the surfaces and the effective
coupling parameter that relates K and R. With increas-
ing friction, i.e., increasing roughness of the surfaces, the
ratio K/R decreases until it saturates as a function of
the structure of the particles, see Eq. (15).

Rough particle surfaces lead to a systematic reduction
of the potential energy of the system without changing
the qualitative behavior. We relate the reduction of po-
tential energy to the additional degree of freedom, i.e.,
rotation. Due to rough surfaces a certain amount of ki-
netic energy is stored in rotational motion. This energy
is not accessible for linear motion in the direction oppo-
site to the gravitational force. Thus, both kinetic and
potential energy are reduced if rough particles are used.

Interestingly, the properties of the walls affect the sys-
tem in a more complicated way. In the dilute regime
smooth, elastic or smooth, dissipative walls correspond
to § = 2 or 6 =~ 3/2 respectively. Collisions between par-
ticles and walls occur frequently if the mean free path
is comparable or larger than the system width L. Thus,
the effect is stronger for less dense systems, i.e., larger H.
Rough walls lead to a further reduction of the height H,
because large tangential velocities relative to the walls
mean strong dissipation due to friction. Overall dissipa-
tion thus depends on the frictional parameters and also
on the density of the system. If we perform simulations
in a container with moving, rough walls, we observe a
behavior that is similar to the behavior of a system with
smooth walls. Moving, rough walls lead to energy dissi-
pation due to friction like fixed, rough walls. But some-
times, due to the velocity of the wall, energy may be
input into the system. However, a system with rough-
ness and normal dissipation, for both particles and walls,
follows Eq. (16) with § ~ 1.33 over two orders of magni-
tude in V. This result is consistent with the experimental
findings of Ref. [16].

Performing simulations with rotating particles, and re-
lating the simulations to recent experiments, we found
the height of the center of mass to be of the same order
of magnitude. Note that the powers é and v are system-
atically larger in simulations, indicating problems with
the three-dimensional (3D) nature of the experimental
setup. The simulations we compared with the experi-
ments were performed in a small range of V and (ny/N)
values. From other simulations, see Fig. 12, we also get
the scaling law Eq. (16) with a power smaller than 2, i.e.,
6 ~ 1.33. Recent theoretical approaches [16,22] always
lead to the power § = 2. Precise comparisons of simu-
lations, experiments, and theories are necessary to learn
where the differences become eminent.

We did not examine convection in vibrated granular
media, but we expect that the frictional properties of
both particles and walls will play an important role for
this effect. Another problem still open is the behavior of
a vibrated system in 3D with respect to the power law
Eq. (16). It would be of interest to know how the system
behaves in 3D, and if the strange power law found in 2D,
ie. H oc V9, with 6 < 2, still holds in 3D.
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APPENDIX A

The momentum change AP is given in Eq. (10). Here,
we calculate the tangential restitution, 3;, that connects
Egs. (9) and (10). Paralleling Eq. (2) the velocity of the
contact point after collision is

d d
e = @y — iy — | =@, + 23} ) x 7. (A1)
2 2
Inserting Egs. (5) into Eq. (A1) and applying Eq. (2) we
get

@, =, + AB—— + AB® LA + L (A2)
e e mi2 4I1 4I2 ’

where I; = g;m;(d;/2)? is the moment of inertia about
the center of particle i. ¢; depends on the structure of
the particles. For example, ¢ = 2/5 for a solid sphere in
3D, and ¢ = 1/2 in the case of a solid disk, or ¢ = 1 for
a thin ring, in 2D. Inserting Eq. (9) into Eq. (A2) we get

e = —ett™ + (1 + u(l+4€)coty(1+ %)) 7

. (A3)
= —eit™ — 7.

From Eq. (A3) we simply get the tangential restitution,
B1, for Coulomb type contacts as

ﬂlz—l—u(1+e)cot'y(1+%) - (A4)

In the case of solid spheres, with ¢ = 2/5, we have 3, =
—1— (7/2)p(1 + €) coty. Note that coty < 0 for all v,
such that —1 < 8;. The lower limit of 8; corresponds to
no friction.

APPENDIX B

In ED simulations the contact time, t., of two parti-
cles is implicitly zero, such that the momentum change
AP describes the collision. In MD simulations, one has
t. > 0, and the sum of all forces, f, acting on a parti-
cle is needed to calculate the momentum change of this
particle:

te
AP = fdt.

t=0

(B1)
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Knowing the impact angle, «y, it is possible to use any
normal force f(™) together with the tangential force

for vy <o

for v >0 , (B2)

FO = { “fg:;’m.
K f tan o’
where 7 is defined in the main text. Usually, normal
forces are based on Hook, Hertz, or hysteretic interaction
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models. The force in Eq. (B2) leads to the ratio
AP® ) tan -y
AP B mn [1’ tan'yo] ’ (B3)

which is consistent with the model described in Sec. II
and introduced by [26,29]. How far this choice of forces is
treatable in simulations and how it is connected to stan-
dard MD methods has to be elaborated.
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